Dynamics of microsatellite divergence under stepwise mutation and proportional slippage/point mutation models.
نویسندگان
چکیده
Recently Kruglyak, Durrett, Schug, and Aquadro showed that microsatellite equilibrium distributions can result from a balance between polymerase slippage and point mutations. Here, we introduce an elaboration of their model that keeps track of all parts of a perfect repeat and a simplification that ignores point mutations. We develop a detailed mathematical theory for these models that exhibits properties of microsatellite distributions, such as positive skewness of allele lengths, that are consistent with data but are inconsistent with the predictions of the stepwise mutation model. We use our theoretical results to analyze the successes and failures of the genetic distances (delta(mu))(2) and D(SW) when used to date four divergences: African vs. non-African human populations, humans vs. chimpanzees, Drosophila melanogaster vs. D. simulans, and sheep vs. cattle. The influence of point mutations explains some of the problems with the last two examples, as does the fact that these genetic distances have large stochastic variance. However, we find that these two features are not enough to explain the problems of dating the human-chimpanzee split. One possible explanation of this phenomenon is that long microsatellites have a mutational bias that favors contractions over expansions.
منابع مشابه
The relationship between microsatellite slippage mutation rate and the number of repeat units.
Microsatellite markers are widely used for genetic studies, but the relationship between microsatellite slippage mutation rate and the number of repeat units remains unclear. In this study, microsatellite distributions in the human genome are collected from public sequence databases. We observe that there is a threshold size for slippage mutations. We consider a model of microsatellite mutation...
متن کاملMicrosatellite mutation models: insights from a comparison of humans and chimpanzees.
Using genomic data from homologous microsatellite loci of pure AC repeats in humans and chimpanzees, several models of microsatellite evolution are tested and compared using likelihood-ratio tests and the Akaike information criterion. A proportional-rate, linear-biased, one-phase model emerges as the best model. A focal length toward which the mutational and/or substitutional process is linearl...
متن کاملEquilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations.
We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distri...
متن کاملDNA Slippage Occurs at Microsatellite Loci without Minimal Threshold Length in Humans: A Comparative Genomic Approach
The dynamics of microsatellite, or short tandem repeats (STRs), is well documented for long, polymorphic loci, but much less is known for shorter ones. For example, the issue of a minimum threshold length for DNA slippage remains contentious. Model-fitting methods have generally concluded that slippage only occurs over a threshold length of about eight nucleotides, in contradiction with some di...
متن کاملA measure of population subdivision based on microsatellite allele frequencies.
A new measure of the extent of population subdivision as inferred from allele frequencies at microsatellite loci is proposed and tested with computer simulations. This measure, called R(ST), is analogous to Wright's F(ST) in representing the proportion of variation between populations. It differs in taking explicit account of the mutation process at microsatellite loci, for which a generalized ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 159 2 شماره
صفحات -
تاریخ انتشار 2001